Day 21

Kalman Filter Examples

Tank of Water

static level

$$
\text { plant model } \quad X_{t}=X_{t-1}
$$

measurement model $\quad Z_{t}=X_{t}+\delta_{t}$

Tank of Water

- filling at a (noisy) constant rate and we do not care about the rate

$$
\text { plant model } \quad x_{t}=x_{L, t-1}+\underbrace{\Delta x_{L}}_{u_{t}}+\varepsilon_{t}
$$

measurement model $Z_{t}=X_{t}+\delta_{t}$

- u_{t} is the change in the water level that occurred from time $t-1$ to t

Tank of Water

filling at a (noisy) constant rate and we want to estimate the rate

$$
\text { plant model } \quad x_{t}=\underbrace{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]}_{A_{t}} \underbrace{\left[\begin{array}{c}
x_{L} \\
\Delta x_{L}
\end{array}\right]_{t-1}}_{x_{t-1}}+\varepsilon_{t}
$$

measurement model $\quad Z_{t}=\underbrace{\left[\begin{array}{ll}1 & 0\end{array}\right]}_{C_{t}} x_{t}+\delta_{t}$

Projectile Motion

projectile launched from some initial point with some initial velocity under

$$
\left(v_{x}, v_{y}\right)
$$ the influence of gravity (no drag)

$$
\begin{aligned}
x(t) & =x_{0}+v_{x} t \\
y(t) & =y_{0}+v_{y} t-\frac{1}{2} g t^{2} \\
v_{x}(t) & =v_{x} \\
v_{y}(t) & =v_{y}-g t
\end{aligned}
$$

Projectile Motion

convert the continuous time equations to discrete recurrence relations for some time step Δt

$$
\begin{aligned}
x_{t} & =x_{t-1}+v_{x, t-1} \Delta t \\
y_{t} & =y_{t-1}+v_{y, t-1} \Delta t-\frac{1}{2} g \Delta t^{2} \\
v_{x, t} & =v_{x, t-1} \\
v_{y, t} & =v_{y, t-1}-g \Delta t
\end{aligned}
$$

Projectile Motion

rewrite in matrix form

$$
\underbrace{\left[\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y}
\end{array}\right]_{t}}_{x_{t}}=\underbrace{\left[\begin{array}{cccc}
1 & 0 & \Delta t & 0 \\
0 & 1 & 0 & \Delta t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}_{A_{t}} \underbrace{\left[\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y}
\end{array}\right]_{t-1}}_{x_{t-1}}+\underbrace{\left[\begin{array}{c}
0 \\
-\frac{1}{2} g \Delta t^{2} \\
0 \\
-g t
\end{array}\right]}_{u_{t}}
$$

Omnidirectional Robot

- an omnidirectional robot is a robot that can move in any direction (constrained in the ground plane)
- http://www.youtube.com/watch?v=DPz-ullMOqc
- http://www.engadget.com/2011/07/09/curtis-boirums-robotic-car-makes-omnidirectional-dreams-come-tr/
- if we are not interested in the orientation of the robot then its state is simply its location

$$
x_{t}=\left[\begin{array}{l}
x \\
y
\end{array}\right]_{t}
$$

Omnidirectional Robot

- a possible choice of motion control is simply a change in the location of the robot

$$
x_{t}=\underbrace{[\begin{array}{c}
x \\
y]_{t-1}
\end{array}+\underbrace{\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]_{t}}_{u_{t}}}_{x_{t-1}}
$$

- with noisy control inputs

$$
x_{t}=\underbrace{\left[\begin{array}{c}
x \\
y
\end{array}\right]_{t-1}}_{x_{t-1}}+\underbrace{\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]_{t}}_{u_{t}}+\varepsilon_{t}
$$

Differential Drive

- recall that we developed two motion models for a differential drive
- using the velocity model, the control inputs are

$$
u_{t}=\binom{v_{t}}{\omega_{t}}+\binom{\varepsilon_{\alpha_{1} v_{t}^{2}+\alpha_{2} \omega_{t}^{2}}}{\varepsilon_{\alpha_{3} v_{t}^{2}+\alpha_{4} \omega_{t}^{2}}}
$$

Differential Drive

using the velocity motion model the discrete time forward kinematics are

$$
\begin{aligned}
x_{t}=\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
\theta^{\prime}
\end{array}\right) & =\left(\begin{array}{c}
x_{c}+\frac{v}{\omega} \sin (\theta+\omega \Delta t) \\
y_{c}-\frac{v}{\omega} \cos (\theta+\omega \Delta t) \\
\theta+\omega \Delta t
\end{array}\right) \\
& =\left(\begin{array}{c}
x-\frac{v}{\omega} \sin \theta+\frac{v}{\omega} \sin (\theta+\omega \Delta t) \\
y+\frac{v}{\omega} \cos \theta-\frac{v}{\omega} \cos (\theta+\omega \Delta t) \\
\theta+\omega \Delta t
\end{array}\right) \quad \text { Eqs } 5.9
\end{aligned}
$$

Differential Drive

- there are two problems when trying to use the velocity motion model in a Kalman filter
the plant model is not linear in the state and control

$$
x_{t}=\left(\begin{array}{c}
x-\frac{v_{t}}{\omega_{t}} \sin \theta+\frac{v_{t}}{\omega_{t}} \sin \left(\theta+\omega_{t} \Delta t\right) \\
y+\frac{v_{t}}{\omega_{t}} \cos \theta-\frac{v_{t}}{\omega_{t}} \cos \left(\theta+\omega_{t} \Delta t\right) \\
\theta+\omega_{t} \Delta t
\end{array}\right)
$$

2. it is not clear how to describe the control noises as a plant covariance matrix

$$
u_{t}=\binom{v_{t}}{\omega_{t}}+\binom{\varepsilon_{\alpha_{1} v_{t}^{2}+\alpha_{2} \omega_{t}^{2}}}{\varepsilon_{\alpha_{3} v_{t}^{2}+\alpha_{4} \omega_{t}^{2}}}
$$

Measurement Model

- there are potentially other problems
> any non-trivial measurement model will be non-linear in terms of the state
- consider using the known locations of landmarks in a measurement model

Landmarks

- a landmark is literally a prominent geographic feature of the landscape that marks a known location
- in common usage, landmarks now include any fixed easily recognizable objects
- e.g., buildings, street intersections, monuments
- for mobile robots, a landmark is any fixed object that can be sensed

Landmarks for Mobile Robots

- visual
- artificial or natural
- retro-reflective
- beacons

LORAN (Long Range Navigation): terrestrial radio; now being phased out

- GPS: satellite radio
- acoustic
- scent?

Landmarks: RoboSoccer

Landmarks: Retroreflector

Landmarks: Active Light

Trilateration

- uses distance measurements to two or more landmarks
- suppose a robot measures the distance d_{1} to a landmark
v the robot can be anywhere on a circle of radius d_{1} around the landmark

Trilateration

- without moving, suppose the robot measures the distance d_{2} to a second landmark
- the robot can be anywhere on a circle of radius d_{2} around the second landmark

Trilateration

- the robot must be located at one of the two intersection points of the circles
- tie can be broken if other information is known

Trilateration

if the distance measurements are noisy then there will be some uncertainty in the location of the robot

Trilateration

- notice that the uncertainty changes depending on where the robot is relative to the landmarks
- uncertainty grows quickly if the robot is in line with the landmarks

Trilateration

- uncertainty grows as the robot moves farther away from the landmarks
- but not as dramatically as the previously slide

Triangulation

- triangulation uses angular information to infer position
- http://longhamscouts.org.uk/content/view/52/38/

Triangulation

in robotics the problem often appears as something like:

- suppose the robot has a (calibrated) camera that detects two landmarks (with known location)
p then we can determine the angular separation, or relative bearing, α between the two landmarks

unknown
position

Triangulation

- the unknown position must lie somewhere on a circle arc
- Euclid proved that any point on the shown circular arc forms an inscribed triangle with angle α
b we need at least one more beacon to estimate the robot's location

